.

Friday, March 29, 2019

Wireless Charging Of Mobile Phones

Wireless Charging Of Mobile PhonesAbstract -With mobile promises befitting a basic fictional character of life, the recharging of mobile sound batteries has always been a problem. The mobile phones vary in their talk time and battery under check according to their manufacturer and batteries. All these phones irrespective of their manufacturer and batteries acquit to be put to recharge by and by the battery has drained out. The primary(prenominal) accusatory of their manufacturer and battery make. In this paper a in the buff marriage offer has been do so as to make the recharging of the mobile phones is done mechanic all(prenominal)y as you talk in your mobile phone This is done by purpose of atom-bombs. The micro-cook signal is transmitted from the transmitter along with the substance signal using special kind of forward passs called slotted wave guide antenna at a frequency of 2.45gigahertz. There atomic make out 18 minimal additions, which have to be made in the mobile handsets, which ar the addition of a sensing element, a rectenna and a filter. With the in a higher place setup, the need for separate chargers for mobile phones is eliminated and makes charging universal. and so the more you talk, the more is your mobile phone charged With this proposal the manufacturers would be able to remove the talk time and battery standby from their phone specificationsINTRODUCTIONTHE ELECTROMAGNETIC SPECTRUMTo start with, to know what a spectrum is when white stir up is shone through a prism it is separated out into all the influence of the rainbow this is the visible spectrum. So white tripping is a mixture of all colour. Black is NOT a colour it is what you get when all the well-to-do is taken away. Some physicists pretend that light consists of tiny particles which they call photons. They kick the bucket at the speed of light (what a surprise). The speed of light is more or less 300,000,000 meters per trice. When they hit some liaison t hey might spring off, go right through or get absorbed. What happens depends a bit on how much energy they have. If they bounce off something and then go into your eye you will seethe thing they have bounced off. Some things like glass and Perspex will let them go through these materialsare transparent. Black objects absorb the photons so you should not be able to see black things you will have to think more or less this one. These poor old physicists get a little bit disquieted when they try to inform why some photons go through a leaf, some are reflected, and some are absorbed. They say that it is because they have diverse amounts of energy. Other physicists pretend that light is made of waves. These physicists measure the length of the waves and this helps them to explain what happens when light hits leaves. The light with the longest wavelength (red) is absorbed by the green stymie (chlorophyll) in the leaves. So is the light with the shortest wavelength (blue). In betwee n these two colours there is green light, this is al impoverisheded to pass right through or is reflected. (Indigo and over-embellished have shorter wavelengths than blue light.)Well it is easy to explain some of the properties of light by pretending that it is made of tiny particles called photons and it is easy to explain other(a) properties of light by pretending that it is some kind of wave.The visible spectrum is practiced one small part of the electromagnetic spectrum. These electromagnetic waves are made up of two parts. The first part is an electric field. The second part is a magnetic field. So that is why they are called electromagnetic waves. The two fields are at right angles to each other.THE MICROWAVE sphere atom-bomb wavelengths range from approximately one millimeter (the thickness of a pencil lead) to thirty centimeter (about twelve inches). In a microwave oven, the radio waves generated are tuned to frequencies that lowlife be absorbed by the feed. The food absorbs the energy and gets warmer. The dish holding the food doesnt absorb a evidential amount of energy and stays much cooler. Microwaves are emitted from the Earth, from objects much(prenominal) as cars and planes, and from another because microwave energy stub put over haze, the atmosphere. These microwaves lavatory be detected to give information, such as the temperature of the object that emitted the microwaves. Microwaves have wavelengths that can be measured in centimeter The longer microwaves, those closer to a foot in length, are the waves which heat our food in a microwave oven. Microwaves are rock-steady for transmitting information from one infinite to light rain and snow, clouds, and smoke. Shorter microwaves are apply in remote sensing. These microwaves are used for radar like the Doppler radar used in hold forecasts. Microwaves, used for radar, are just a few inches long. Because microwaves can penetrate haze, light rain and snow, clouds and smoke, these wa ves are good for viewing the Earth from aloofness Microwave waves are used in the communication industry and in the kitchen as a way to cook foods. Microwave radiation is heretofore associated with energy levels that are usually considered harmless except for people with measure makers.Here we are going to use the S circumstances of the Microwave Spectrum.Microwave frequency bandsDesignation Frequency rangeK phone 18 to 26 gigacycle per secondKa mountain 26 to 40 GHzQ Band 30 to 50 GHzU Band 40 to 60 GHzV Band 46 to 56 GHzW Band 56 to 100 GHzL Band 1 to 2 GHzS Band 2 to 4 GHzC Band 4 to 8 GHzX Band 8 to 12 GHzKu Band 12 to 18 GHzThe frequency selection is another important aspect in transmission. Here we have selected the license free 2.45 GHz ISM band for our purpose.The Industrial, Scientific and Medical (ISM) radio bands were originally re actiond internationally for non-commercial use of RF electromagnetic fields for industrial, scientific and medical purposes.The ISM ba nds are defined by the ITU-T in S5.138 and S5.150 of the Radio Regulations. Individual countries use of the bands designated in these sections may differ due to variations in national radio regulations.In recent years they have as well as been used for license-free error-tolerant communications applications such as wireless LANs and Bluetooth900 MHz band (33.3 cm) ( excessively GSM communication in India )2.45 GHz band (12.2 cm) IEEE 802.11b wireless Ethernet also operates on the 2.45 GHz band. transmitter DESIGNThe MAGNETRON (A), is a self-contained microwave oscillator that operates differently from the linear-beam organ pipes, such as the TWT and the klystron. View fig(1) is a simplified drawing of the magnetron. CROSSED-ELECTRON and MAGNETIC fields are used in the magnetron to produce the high- queen output required in radar and communications equipment.The magnetron is classed as a semiconductor junction rectifier because it has no grid. A magnetic field located in the du mmy between the cuticle (anode) and the cathode exercises as a grid. The plate of a magnetron does not have the identical physical appearance as the plate of an ordinary electron tube. Since accomplished inductive-capacitive (LC) networks become impractical at microwave frequencies, the plate is fabricated into a cylindrical copper block containing resonant cavities that serve as tuned circuits. The magnetron make differs considerably from the conventional tube base. The magnetron base is short in length and has large diameter leads that are carefully sealed into the tube and shielded. The cathode and strand are at the centre of the tube and are supported by the filament leads. The filament leads are large and rigid enough to elapse the cathode and filament structure fixed in position. The output lead is usually a probe or loop extending into one of the tuned cavities and coupled into a waveguide or coaxial line. The plate structure, shown in fig(1), is a substantial block o f copper.The cylindrical holes around its circumference are resonant cavities. A narrow slot runs from each cavity into the central portion of the tube dividing the innerstructure into as many segments as there are cavities. Alternate segments are strapped together to put the cavities in parallel with get word to the output. Thecavities control the output frequency. The straps are circular, metal bands that are placed crossways the top of the block at the entrance slots to the cavities. Since thecathode must operate at high military group, it must be fairly large and must also be able to withstand high operating temperatures. It must also have good emissioncharacteristics, particularly under return natural spring by the electrons. This isbecause most of the output power is provided by the large number of electrons that are emitted when high-velocity electrons return to strike the cathode. Thecathode is indirectly heated and is constructed of a high-emission material. The open sp ace between the plate and the cathode is called the INTERACTIONSPACE. In this space the electric and magnetic fields interact to exert force upon the electrons. figure (1) The magnetron structureRECEIVER DESIGNThe basic addition to the mobile phone is going to be the rectenna. A rectenna is a rectifying antenna, a special grammatical case of antenna that is used to directly convert microwave energy into DC electricity. Its elements are usually arranged in a mesh pattern, self-aggrandising it a distinct appearance from most antenna .A simple rectenna can be constructed from a schottky diode placed between antenna dipoles. The diode rectifies the current induced in the antenna by the microwaves.Rectennae are extremely efficient at converting microwave energy to electricity. In laboratory environments, efficiencies above 90% have been observed with regularity. Some experimentation has been done with opposite rectennae, converting electricity into microwave energy, but efficiencies are much loweronly in the celestial orbit of 1%. With the advent of nanotechnology and MEMS the size of these devices can be brought down to molecular(a) level. It has been theorized that similar devices, scaled down to the proportions used in nanotechnology, could be used to convert light into electricity at much greater efficiencies than what is presently possible with solar cells. This type of device is called an optical rectenna. Theoretically, high efficiencies can be maintained as the device shrinks, but experiments funded by the unite States National RenewableEnergy Laboratory have so outlying(prenominal) only obtained roughly 1% efficiency while using infrared light. Another important part of our receiver circuitry is a simple sensor. This is just used to identify when the mobile phone exploiter is talking. As our main objective is to charge the mobile phone with the transmitted microwave after rectifying it by the rectenna, the sensor plays an important role. The wh ole setup looks something like this.THE impact OF RECTIFICATIONStudies on various microwave power rectifier configurations show that a bridge configuration is better than a single diode one. hardly the dimensions and the cost of that kind of solution do not meet our objective. This prove consists in designing and simulating a single diode power rectifier in hybrid technology with improved sensitivity at low power levels. We achieved good matching between simulation results and measurements thanks to the optimisation of the publicity of the Schottky diode.Microwave energy transmitted from space to earth apparently has the say-so to provide environmentally clean electric power on a very large scale. The key to improve transmission efficiency is the rectifying circuit. The require of this mull is to make a low cost power rectifier for low and high power levels at a frequency of 2.45 GHz with good efficiency of rectifying operation. The objective also is to increase the detection sensitivity at low levels of power. Different configurations can be used to convert the electromagnetic wave into DC signal, the study done in showed that the use of a bridge is better than a single diode, but the purpose of this study is to achieve a low cost microwave rectifier with single Schottky diode for low and high power levels that has a good performances. This study is shared on two kind of technologies the first is the hybrid technology and the second is the monolithic one. The goal of this investigation is the development of a hybrid microwave rectifier with single Schottky diode. The first study of this circuit is based on the optimization of the rectifier in order to have a good matching of the stimulus impedance at the desired frequency 2.45GHz. Besides, the aim of the second study is the increasing of the detection sensitivity at low levels of power.SENSOR CIRCUITRYThe sensor circuitry is a simple circuit, which detects if the mobile phone receives any message sign al. This is required, as the phone has to be charged as long as the user is talking. frankincense a simple F to V converter would serve our purpose. In India the operating frequency of the mobile phone operators is generally 900MHz or 1800MHz for the GSM system for mobile communication. Thus the usage of simple F to V converters would act as switches to trigger the rectenna circuit to on. A simple that powerful F to V converter is LM2907. Using LM2907 would greatly serve our purpose. It acts as a switch for triggering the rectenna circuitry. The general block diagram for the LM2907 is addicted below. Thus on the reception of the signal the sensor circuitry directs the rectenna circuit to ON and the mobile phone begins to charge using the microwave power.CONCLUSIONThus this paper successfully demonstrates a novel rule of using the power of the microwave to charge the mobile phones without the use of wired chargers. Thus this method provides great advantage to the mobile phone user s to carry their phones anywhere til now if the place is devoid of facilities for charging. A novel use of the rectenna and a sensor in a mobile phone could provide a new dimension in the revelation of mobile phone.

No comments:

Post a Comment